From Data to Policy: Integrating Spatial Clustering and Digital Sentiment Analysis for Urban Tourism Planning
Abstract
This study aims to identify spatial patterns of artificial tourist attractions and extract key visitor concerns to support urban tourism planning. To achieve this objective, spatial clustering and sentiment analysis were applied sequentially as complementary analytical approaches. The DBSCAN algorithm was used to group 62 artificial tourist attractions into five spatially coherent clusters based on geographic proximity. In parallel, Natural Language Processing (NLP) techniques were employed to analyze 2,800 online visitor reviews and classify dominant sentiment themes. The results reveal distinct spatial structures of attractions and recurring negative issues related to pricing transparency, parking availability, food quality, accessibility, and facility conditions. Using Batu City, Indonesia, as a case study, this research demonstrates how integrating geospatial analysis with user-generated content can transform informal digital feedback into policy-relevant insights. The proposed framework offers a practical, data-driven approach for informing tourism governance and planning decisions in emerging urban tourism destinations.
Views: 89
Downloads
References
Akkaya, M., Özçevik, Ö., & Tepe, E. (2024). A machine learning application to Google Maps Reviews as a participatory planning tool. International Journal of Urban Sciences, 28(3), 379–402. https://doi.org/10.1080/12265934.2024.2320916
Bellone, C., Naselli, F., & Andreassi, F. (2021). New Governance Path through Digital Platforms and the Old Urban Planning Process in Italy. Sustainability, 13(12), 6911. https://doi.org/10.3390/su13126911
Çakar, K. (2023). Towards an ICT-led tourism governance: A systematic literature review. European Journal of Tourism Research, 34, 3404. https://doi.org/10.54055/ejtr.v34i.2471
Çalışkan, C., Okat, Ç., & Yeşilyurt, H. (2020). Potansiyel Turizm Destinasyonlarında Bulunan Otellerle İlgili E-Şikâyetlerin Coğrafi Bakışla Değerlendirilmesi: Adıyaman Örneği. Turk Turizm Arastirmalari Dergisi, 4(3), 2003–2017. https://doi.org/10.26677/TR1010.2020.463
Cardoso da Silva, G., Nascimento Farias, S., & Silva, E. da. (2024). PAISAGENS E TURISMO: A CONSTRUÇÃO DE REALIDADES ARTIFICIAIS. REVISTA BRASILEIRA DOS OBSERVATÓRIOS DE TURISMO - ReBOT, 3(2), 116–121. https://doi.org/10.59776/2764-5835.2024.6554
Chen, W., Xu, Z., Zheng, X., Yu, Q., & Luo, Y. (2020). Research on Sentiment Classification of Online Travel Review Text. Applied Sciences, 10(15), 5275. https://doi.org/10.3390/app10155275
De Marchi, D., Becarelli, R., & Di Sarli, L. (2022). Tourism Sustainability Index: Measuring Tourism Sustainability Based on the ETIS Toolkit, by Exploring Tourist Satisfaction via Sentiment Analysis. Sustainability, 14(13), 8049. https://doi.org/10.3390/su14138049
Druker Shitrit, S., & Noy, C. (2024). 'Come support the locals!': mediating peripheral spaces on Google maps via user-generated content. Convergence: The International Journal of Research into New Media Technologies, 30(6), 2233–2250. https://doi.org/10.1177/13548565231200827
Fahim, A. (2022). An Extended DBSCAN Clustering Algorithm. International Journal of Advanced Computer Science and Applications, 13(3). https://doi.org/10.14569/IJACSA.2022.0130331
Frenzel, F., Giddy, J., & Frisch, T. (2022). Digital technology, tourism, and geographies of inequality. Tourism Geographies, 24(6–7), 923–933. https://doi.org/10.1080/14616688.2022.2142843
Gujjar J, P., & Kumar, P. (2020). Opinion Mining for the Customer Feedback using TextBlob. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 72–76. https://doi.org/10.32628/CSEIT206418
Hahsler, M., Piekenbrock, M., & Doran, D. (2019). dbscan: Fast Density-Based Clustering with R. Journal of Statistical Software, 91(1). https://doi.org/10.18637/jss.v091.i01
Harjule, P., Gurjar, A., Seth, H., & Thakur, P. (2020). Text Classification on Twitter Data. 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), 160–164. https://doi.org/10.1109/ICETCE48199.2020.9091774
Huang, Y., & Liu, Y. (2024). A critical reflection on tourism geopolitics: research progress and future agenda. Tourism Geographies, 26(5), 881–897. https://doi.org/10.1080/14616688.2024.2366481
Hudayberganov, D. T., Toshalieva, T. S., Matsaidova, S. X., Alieva, G. I., Atabaeva, K. R., & Sabirova, O. Sh. (2024). Specific characteristics of tourism infrastructure development. E3S Web of Conferences, 587, 05017. https://doi.org/10.1051/e3sconf/202458705017
Karayazi, S. S., Dane, G., & Arentze, T. (2022). AN EXPLORATION OF INTERACTIONS BETWEEN URBAN HERITAGES AND TOURIST'S DIGITAL FOOTPRINT: NETWORK AND TEXTUAL ANALYSIS VIA GEOTAGGED FLICKR DATA IN AMSTERDAM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-4/W3-2022, 105–112. https://doi.org/10.5194/isprs-annals-X-4-W3-2022-105-2022
Kulakov, K. Y., Uvarova, S. S., Orlov, A. K., Kankhva, V. S., & Sudakova, A. A. (2024). Determining the Level of and Potential for the Development of Tourism Clusters, Taking into Account Infrastructure and Urban Planning Factors. Sustainability, 16(19), 8660. https://doi.org/10.3390/su16198660
Larasati, A., Sayono, J., Purnomo, A., Mohamad, E., Farhan, M., & Rahmawati, P. (2020). Applying Web Mining and Sentiment Analysis to Assess Tourists Review on Batu City Tourist Destination. 2020 4th International Conference on Vocational Education and Training (ICOVET), 63–68. https://doi.org/10.1109/ICOVET50258.2020.9230090
Lin, Y. (2022). Social media for collaborative planning: A typology of support functions and challenges. Cities, 125, 103641. https://doi.org/10.1016/j.cities.2022.103641
Liu, Y., Xiao, W., Xu, T., He, B., Wang, Y., & Mu, J. (2024). Spatial Agglomeration Mining of Urban Recreational Amenities: the Case of the Greater Bay Area in China. Leisure Sciences, 1–27. https://doi.org/10.1080/01490400.2024.2396499
Ma, B., Yang, C., Li, A., Chi, Y., & Chen, L. (2023). A Faster DBSCAN Algorithm Based on Self-Adaptive Determination of Parameters. Procedia Computer Science, 221, 113–120. https://doi.org/10.1016/j.procs.2023.07.017
Maimaitiaili, Y. (2024). Integrated Tourism: A Holistic Approach to Resolving Fragmentation Challenges in Tourism Governance. SHS Web of Conferences, 187, 03033. https://doi.org/10.1051/shsconf/202418703033
Manning, C. D., & Schutze, H. (1999). Foundations of statistical natural language processing. MIT Press.
Manosuthi, N. (2024). Enhancing Secondary City Tourism in Thailand: Exploring Revenue Generation, Sustainable Practices, and the Role of Brand Identity. ABAC Journal. https://doi.org/10.59865/abacj.2024.42
McLoughlin, E., & Hanrahan, J. (2023). Evidence-informed planning for tourism. Journal of Policy Research in Tourism, Leisure and Events, 15(1), 1–17. https://doi.org/10.1080/19407963.2021.1931257
Mou, J. (2022). Complex network effect of urban smart tourism: spatial patterns of crowd movement in Jinan, China. In X. Ye, F. Falcone, & H. Cui (Eds.), 2nd International Conference on Internet of Things and Smart City (IoTSC 2022) (p. 125). SPIE. https://doi.org/10.1117/12.2637036
Nag, A. (2024). Local Development and Tourism Competitiveness (pp. 160–190). https://doi.org/10.4018/979-8-3693-4135-3.ch010
Rocca, L., Giacomini, D., & Zola, P. (2021). Environmental disclosure and sentiment analysis: state of the art and opportunities for public-sector organisations. Meditari Accountancy Research, 29(3), 617–646. https://doi.org/10.1108/MEDAR-09-2019-0563
Săvan, R., Crăciun, C., & Ivănescu, A. (2024). The interplay and parallel between urban landscape usage, smart city concepts and tourism development in modern cities. E3S Web of Conferences, 585, 01009. https://doi.org/10.1051/e3sconf/202458501009
Shen, H., Aziz, N. F., Liu, J., Huang, M., Yu, L., & Yang, R. (2024). From text to insights: leveraging NLP to assess how landscape features shape tourist perceptions and emotions toward traditional villages. Environmental Research Communications, 6(11), 115006. https://doi.org/10.1088/2515-7620/ad8ca3
Shim, W.-S., Kim, H.-W., & Shim, C.-S. (2022). Study on the Strategies for Utilizing Regional Infrastructures as Tourist Attractions. The Korean Association of Urban Policies, 13(2), 71–87. https://doi.org/10.21447/jusre.2022.13.2.71
Sinanan, J., & Ritter, C. S. (2024). Emerging media technologies in the tourist encounter. Tourism Geographies, 26(4), 587–598. https://doi.org/10.1080/14616688.2024.2391339
Sulistyowati, L., Krisnawati, E., Andareswari, N., Afrianto, F., Rais, A., Hafa, M. F., Darwiyati, D., Ginting, A. L., & HIDAYATULLAH, R. R. (2024). Strategy Approach for the Development of a Sustainable Environmentally Friendly Tourism City. Journal of Environmental Management and Tourism, 15(1), 94. https://doi.org/10.14505/jemt.v15.1(73).08
Unver, M., & Erginel, N. (2020). Clustering applications of IFDBSCAN algorithm with comparative analysis. Journal of Intelligent & Fuzzy Systems, 39(5), 6099–6108. https://doi.org/10.3233/JIFS-189082
Widi Lestari, A., Yuniningsih, T., Larasati, E., & Okto Adhitama, M. (2023). Sustainable Development Based Tourism in Batu City. KnE Social Sciences. https://doi.org/10.18502/kss.v8i11.13565
Xie, P. F. (2022). Towards a Framework for the Morphology of Tourism. Tourism Planning & Development, 19(5), 377–391. https://doi.org/10.1080/21568316.2022.2072945
Yin, L., Hu, H., Li, K., Zheng, G., Qu, Y., & Chen, H. (2023). Improvement of DBSCAN Algorithm Based on K-Dist Graph for Adaptive Determining Parameters. Electronics, 12(15), 3213. https://doi.org/10.3390/electronics12153213
-
177
-
67
-
35
-
35
-
35
-
31
-
30
-
26
-
25
-
24

